Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617229

RESUMO

Down Syndrome (DS) is a common genetic condition caused by trisomy of chromosome 21. Among the complex clinical features including musculoskeletal, neurological and cardiovascular disabilities, individuals with DS develop progressive dementia and early onset Alzheimer's Disease (AD). This is attributed to the increased gene dosage of amyloid precursor protein (APP), the formation of self-propagating Aß and tau prion conformers, and the deposition of neurotoxic Aß plaques and tau neurofibrillary tangles. Tau amyloid fibrils have previously been established to adopt many distinct conformations across different neurodegenerative conditions. Here we characterized 4 DS cases spanning 36 to 63 years in age by spectral confocal imaging with conformation-specific dyes and cryo-electron microscopy (cryo-EM) to determine structures of isolated tau fibrils. High-resolution structures reveal paired helical (PHF) and straight filament (SF) conformations of tau that are identical to those determined from AD. The PHFs and SFs are made of two C-shaped protofilaments with a cross-ß/ß-helix motif. Similar to AD, most filaments adopt the PHF form, while a minority (~20%) form SFs. For the youngest individual with no documented dementia samples exhibited sparse tau deposits. To isolate tau for cryo-EM from this challenging sample we employed a novel "affinity grid" method involving a graphene-oxide surface derivatized with anti-tau antibodies. This improved isolation and revealed primarily tau PHFs and a minor population of SSPE type II-like filaments are present at this early age. These findings expand the similarities between AD and DS to the molecular level providing insight into their related pathologies and the potential for targeting common tau filament folds by small molecule therapeutics and diagnostics.

2.
Viruses ; 16(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543726

RESUMO

Theodor ("Ted") Otto Diener (* 28 February 1921 in Zürich, Switzerland; † 28 March 2023 in Beltsville, MD, USA) pioneered research on viroids while working at the Plant Virology Laboratory, Agricultural Research Service, USDA, in Beltsville. He coined the name viroid and defined viroids' important features like the infectivity of naked single-stranded RNA without protein-coding capacity. During scientific meetings in the 1970s and 1980s, viroids were often discussed at conferences together with other "subviral pathogens". This term includes what are now called satellite RNAs and prions. Satellite RNAs depend on a helper virus and have linear or, in the case of virusoids, circular RNA genomes. Prions, proteinaceous infectious particles, are the agents of scrapie, kuru and some other diseases. Many satellite RNAs, like viroids, are non-coding and exert their function by thermodynamically or kinetically controlled folding, while prions are solely host-encoded proteins that cause disease by misfolding, aggregation and transmission of their conformations into infectious prion isoforms. In this memorial, we will recall the work of Ted Diener on subviral pathogens.


Assuntos
Ácidos Nucleicos , Príons , Viroides , Animais , Viroides/genética , Viroides/metabolismo , RNA Satélite/genética , RNA Viral/genética , RNA Viral/metabolismo , Doenças das Plantas
3.
Nat Commun ; 14(1): 3048, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236970

RESUMO

Accumulation of filamentous aggregates of tau protein in the brain is a pathological hallmark of Alzheimer's disease (AD) and many other neurodegenerative tauopathies. The filaments adopt disease-specific cross-ß amyloid conformations that self-propagate and are implicated in neuronal loss. Development of molecular diagnostics and therapeutics is of critical importance. However, mechanisms of small molecule binding to the amyloid core is poorly understood. We used cryo-electron microscopy to determine a 2.7 Å structure of AD patient-derived tau paired-helical filaments bound to the PET ligand GTP-1. The compound is bound stoichiometrically at a single site along an exposed cleft of each protofilament in a stacked arrangement matching the fibril symmetry. Multiscale modeling reveals pi-pi aromatic interactions that pair favorably with the small molecule-protein contacts, supporting high specificity and affinity for the AD tau conformation. This binding mode offers critical insight into designing compounds to target different amyloid folds found across neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Amiloide , Microscopia Crioeletrônica , Ligantes , Proteínas tau/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(13): e2220984120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36952379

RESUMO

The amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) of Guam is an endemic neurodegenerative disease that features widespread tau tangles, occasional α-synuclein Lewy bodies, and sparse ß-amyloid (Aß) plaques distributed in the central nervous system. Extensive studies of genetic or environmental factors have failed to identify a cause of ALS-PDC. Building on prior work describing the detection of tau and Aß prions in Alzheimer's disease (AD) and Down syndrome brains, we investigated ALS-PDC brain samples for the presence of prions. We obtained postmortem frozen brain tissue from 26 donors from Guam with ALS-PDC or no neurological impairment and 71 non-Guamanian donors with AD or no neurological impairment. We employed cellular bioassays to detect the prion conformers of tau, α-synuclein, and Aß proteins in brain extracts. In ALS-PDC brain samples, we detected high titers of tau and Aß prions, but we did not detect α-synuclein prions in either cohort. The specific activity of tau and Aß prions was increased in Guam ALS-PDC compared with sporadic AD. Applying partial least squares regression to all biochemical and prion infectivity measurements, we demonstrated that the ALS-PDC cohort has a unique molecular signature distinguishable from AD. Our findings argue that Guam ALS-PDC is a distinct double-prion disorder featuring both tau and Aß prions.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Demência , Doenças Neurodegenerativas , Transtornos Parkinsonianos , Doenças Priônicas , Príons , Humanos , alfa-Sinucleína , Esclerose Amiotrófica Lateral/metabolismo , Demência/metabolismo , Transtornos Parkinsonianos/metabolismo , Proteínas tau/metabolismo
5.
Methods Mol Biol ; 2561: 293-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399277

RESUMO

Studies show that patients with Alzheimer's disease (AD) have both Aß and tau prions, and thus, AD is a double-prion disease. AD patients with the greatest longevity exhibited low levels of both Aß and tau prions; tau prions were nearly absent in the brains of almost half of the patients who lived beyond 80 years of age. Using cellular bioassays for prions in postmortem samples, we found that both Aß and tau proteins misfold into prions leading to AD, which is either a sporadic or familial dementing disorder. Although AD is transmissible experimentally, there is no evidence that AD is either communicable or contagious. Since the progression of AD correlates poorly with insoluble Aß in the central nervous system (CNS), it was difficult to distinguish between inert amyloids and Aß prions. To measure the progression of AD, we devised rapid bioassays to measure the abundance of isoform-specific Aß prions in the brains of transgenic (Tg) mice and in postmortem human CNS samples from AD victims and people who died of other neurodegenerative diseases (NDs). We found significant correlations between the longevity of individuals with AD, sex, and genetic background, despite the fact that all postmortem brain tissue had essentially the same confirmed neuropathology.Although brains from all AD patients had measurable levels of Aß prions at death, the oldest individuals had lower Aß prion levels than the younger ones. Additionally, the long-lived individuals had low tau prion levels that correlated with the extent of phosphorylated tau (p-tau). Unexpectedly, a longevity-dependent decrease in tau prions was found in spite of increasing amounts of total insoluble tau. When corrected for the abundance of insoluble tau, the tau prion levels decreased exponentially with respect to the age at death with a half-time of approximately one decade, and this correlated with the abundance of phosphorylated tau.Even though our findings with tau prions were not unexpected, they were counterintuitive; thus, tau phosphorylation and tau prion activity decreased exponentially with longevity in patients with AD ranging from ages 37 to 99 years. Our findings demonstrated an inverse correlation between longevity in AD patients and the abundance of neurotoxic tau prions. Moreover, our discovery may have profound implications for the selection of phenotypically distinct patient populations and the development of diagnostics and effective therapeutics for AD.


Assuntos
Doença de Alzheimer , Príons , Humanos , Animais , Camundongos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos
6.
Proc Natl Acad Sci U S A ; 119(46): e2212954119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343257

RESUMO

Down syndrome (DS) is caused by the triplication of chromosome 21 and is the most common chromosomal disorder in humans. Those individuals with DS who live beyond age 40 y develop a progressive dementia that is similar to Alzheimer's disease (AD). Both DS and AD brains exhibit numerous extracellular amyloid plaques composed of Aß and intracellular neurofibrillary tangles composed of tau. Since AD is a double-prion disorder, we asked if both Aß and tau prions feature in DS. Frozen brains from people with DS, familial AD (fAD), sporadic AD (sAD), and age-matched controls were procured from brain biorepositories. We selectively precipitated Aß and tau prions from DS brain homogenates and measured the number of prions using cellular bioassays. In brain extracts from 28 deceased donors with DS, ranging in age from 19 to 65 y, we found nearly all DS brains had readily measurable levels of Aß and tau prions. In a cross-sectional analysis of DS donor age at death, we found that the levels of Aß and tau prions increased with age. In contrast to DS brains, the levels of Aß and tau prions in the brains of 37 fAD and sAD donors decreased as a function of age at death. Whether DS is an ideal model for assessing the efficacy of putative AD therapeutics remains to be determined.


Assuntos
Doença de Alzheimer , Síndrome de Down , Príons , Adulto , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudos Transversais , Síndrome de Down/patologia , Príons/metabolismo , Proteínas tau/metabolismo
7.
Nat Mach Intell ; 4(6): 583-595, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36276634

RESUMO

In microscopy-based drug screens, fluorescent markers carry critical information on how compounds affect different biological processes. However, practical considerations, such as the labor and preparation formats needed to produce different image channels, hinders the use of certain fluorescent markers. Consequently, completed screens may lack biologically informative but experimentally impractical markers. Here, we present a deep learning method for overcoming these limitations. We accurately generated predicted fluorescent signals from other related markers and validated this new machine learning (ML) method on two biologically distinct datasets. We used the ML method to improve the selection of biologically active compounds for Alzheimer's disease (AD) from a completed high-content high-throughput screen (HCS) that had only contained the original markers. The ML method identified novel compounds that effectively blocked tau aggregation, which had been missed by traditional screening approaches unguided by ML. The method improved triaging efficiency of compound rankings over conventional rankings by raw image channels. We reproduced this ML pipeline on a biologically independent cancer-based dataset, demonstrating its generalizability. The approach is disease-agnostic and applicable across diverse fluorescence microscopy datasets.

8.
Acta Neuropathol ; 144(4): 677-690, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36018376

RESUMO

In multiple system atrophy (MSA), the protein α-synuclein misfolds into a prion conformation that self-templates and causes progressive neurodegeneration. While many point mutations in the α-synuclein gene, SNCA, have been identified as the cause of heritable Parkinson's disease (PD), none have been identified as causing MSA. To examine whether MSA prions can transmit disease to mice expressing wild-type (WT) human α-synuclein, we inoculated transgenic (Tg) mice denoted TgM20+/- with brain homogenates prepared from six different deceased MSA patients. All six samples transmitted CNS disease to the mice, with an average incubation period of ~ 280 days. Interestingly, TgM20+/- female mice developed disease > 60 days earlier than their male counterparts. Brains from terminal mice contained phosphorylated α-synuclein throughout the hindbrain, consistent with the distribution of α-synuclein inclusions in MSA patients. In addition, using our α-syn-YFP cell lines, we detected α-synuclein prions in brain homogenates prepared from terminal mice that retained MSA strain properties. To our knowledge, the studies described here are the first to show that MSA prions transmit neurological disease to mice expressing WT SNCA and that the rate of transmission is sex dependent. By comparison, TgM20+/- mice inoculated with WT preformed fibrils (PFFs) developed severe neurological disease in ~ 210 days and exhibited robust α-synuclein neuropathology in both limbic regions and the hindbrain. Brain homogenates from these animals exhibited biological activities that are distinct from those found in MSA-inoculated mice when tested in the α-syn-YFP cell lines. Differences between brains from MSA-inoculated and WT PFF-inoculated mice potentially argue that α-synuclein prions from MSA patients are distinct from the PFF inocula and that PFFs do not replicate MSA strain biology.


Assuntos
Atrofia de Múltiplos Sistemas , Príons , Animais , Feminino , Humanos , Corpos de Inclusão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , Príons/genética , Príons/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115402

RESUMO

The α-synuclein protein can adopt several different conformations that cause neurodegeneration. Different α-synuclein conformers cause at least three distinct α-synucleinopathies: multiple system atrophy (MSA), dementia with Lewy bodies (DLB), and Parkinson's disease (PD). In earlier studies, we transmitted MSA to transgenic (Tg) mice and cultured HEK cells both expressing mutant α-synuclein (A53T) but not to cells expressing α-synuclein (E46K). Now, we report that DLB is caused by a strain of α-synuclein prions that is distinct from MSA. Using cultured HEK cells expressing mutant α-synuclein (E46K), we found that DLB prions could be transmitted to these HEK cells. Our results argue that a third strain of α-synuclein prions likely causes PD, but further studies are needed to identify cells and/or Tg mice that express a mutant α-synuclein protein that is permissive for PD prion replication. Our findings suggest that other α-synuclein mutants should give further insights into α-synuclein prion replication, strain formation, and disease pathogenesis, all of which are likely required to discover effective drugs for the treatment of PD as well as the other α-synucleinopathies.


Assuntos
Demência/metabolismo , Doença por Corpos de Lewy/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Príons/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo
10.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064393

RESUMO

Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aß peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Proteínas Priônicas/genética , Scrapie/genética , alfa-Sinucleína/genética , Proteínas tau/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Síndrome de Creutzfeldt-Jakob/etiologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Demência Frontotemporal/etiologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Expressão Gênica , Doença de Gerstmann-Straussler-Scheinker/etiologia , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Mutação , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Príons , Dobramento de Proteína , Scrapie/etiologia , Scrapie/metabolismo , Scrapie/patologia , Ovinos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
11.
ACS Omega ; 6(14): 9804-9812, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869960

RESUMO

In the literature, C-N coupling methods for the reaction of iodo-oxazole with 2-pyridinone were found to be low yielding. C-N coupling using silver benzoate additives with CuI catalysts and 4,7-dimethoxy-1,10-phenanthroline ligands has been developed to afford synthetically useful yields of the desired heterobicycle product. The reaction conditions are applied to the coupling of a range of iodo-heterocycles with 2-pyridinone. The coupling of a variety of NH-containing heterocycles with 4-iodo-oxazole is also demonstrated. The use of 2-, 4-, or 5-iodo-oxazole allows for the coupling of pyridinone to each oxazole position.

12.
Org Lett ; 23(10): 3823-3827, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33929208

RESUMO

The development of a water-soluble iridium catalyst enables the trifluoromethylation of polar small molecules and peptides in DMSO solution or aqueous media. The reaction was optimized in a microtiter plate format under ambient air, using commercial Langlois reagent as a CF3 radical source, blue LEDs for excitation, and using DPBS as solvent to provide up to 60% CF3- peptide.


Assuntos
Hidrocarbonetos Fluorados/química , Irídio/química , Mesilatos/química , Fosfatos/química , Solventes , Catálise , Luz , Estrutura Molecular , Água
13.
Neuron ; 109(10): 1675-1691.e9, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33848474

RESUMO

Tau aggregates contribute to neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease (AD). Although RNA promotes tau aggregation in vitro, whether tau aggregates in cells contain RNA is unknown. We demonstrate, in cell culture and mouse brains, that cytosolic and nuclear tau aggregates contain RNA with enrichment for small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Nuclear tau aggregates colocalize with and alter the composition, dynamics, and organization of nuclear speckles, membraneless organelles involved in pre-mRNA splicing. Moreover, several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and brains of individuals with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations, we observe that the presence of tau aggregates is sufficient to alter pre-mRNA splicing. This work identifies tau alteration of nuclear speckles as a feature of tau aggregation that may contribute to the pathology of tau aggregates.


Assuntos
Doença de Alzheimer/metabolismo , Núcleo Celular/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Núcleo Celular/ultraestrutura , Citosol/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transporte Proteico , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo
15.
Emerg Top Life Sci ; 4(2): 155-167, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32803268

RESUMO

Prions were initially discovered in studies of scrapie, a transmissible neurodegenerative disease (ND) of sheep and goats thought to be caused by slow viruses. Once scrapie was transmitted to rodents, it was discovered that the scrapie pathogen resisted inactivation by procedures that modify nucleic acids. Eventually, this novel pathogen proved to be a protein of 209 amino acids, which is encoded by a chromosomal gene. After the absence of a nucleic acid within the scrapie agent was established, the mechanism of infectivity posed a conundrum and eliminated a hypothetical virus. Subsequently, the infectious scrapie prion protein (PrPSc) enriched for ß-sheet was found to be generated from the cellular prion protein (PrPC) that is predominantly α-helical. The post-translational process that features in nascent prion formation involves a templated conformational change in PrPC that results in an infectious copy of PrPSc. Thus, prions are proteins that adopt alternative conformations, which are self-propagating and found in organisms ranging from yeast to humans. Prions have been found in both Alzheimer's (AD) and Parkinson's (PD) diseases. Mutations in APP and α-synuclein genes have been shown to cause familial AD and PD. Recently, AD was found to be a double prion disorder: both Aß and tau prions feature in this ND. Increasing evidence argues for α-synuclein prions as the cause of PD, multiple system atrophy, and Lewy body dementia.


Assuntos
Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Príons/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Proteínas Mutantes/genética , Mutação , Proteínas PrPSc/genética , Proteínas Priônicas/genética , Conformação Proteica , alfa-Sinucleína/genética , Proteínas tau/metabolismo
17.
ACS Med Chem Lett ; 11(2): 127-132, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32071678

RESUMO

Tau prions feature in the brains of patients suffering from Alzheimer's disease and other tauopathies. For the development of therapeutics that target the replication of tau prions, a high-content, fluorescence-based cell assay was developed. Using this high-content phenotypic screen for nascent tau prion formation, a 4-piperazine isoquinoline compound (1) was identified as a hit with an EC50 value of 390 nM and 0.04 K p,uu. Analogs were synthesized using a hypothesis-based approach to improve potency and in vivo brain penetration resulting in compound 25 (EC50 = 15 nM; K p,uu = 0.63). We investigated the mechanism of action of this series and found that a small set of active compounds were also CDK8 inhibitors.

18.
PLoS Pathog ; 16(2): e1008222, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017806

RESUMO

Multiple system atrophy (MSA), a progressive neurodegenerative disease characterized by autonomic dysfunction and motor impairment, is caused by the self-templated misfolding of the protein α-synuclein. With no treatment currently available, we sought to characterize the spread of α-synuclein in a transgenic mouse model of MSA prion propagation to support drug discovery programs for synucleinopathies. Brain homogenates from MSA patient samples or mouse-passaged MSA were inoculated either by standard freehand injection or stereotactically into TgM83+/- mice, which express human α-synuclein with the A53T mutation. Following disease onset, brains from the mice were tested for biologically active α-synuclein prions using a cell-based assay and examined for α-synuclein neuropathology. Inoculation studies using homogenates prepared from brain regions lacking detectable α-synuclein neuropathology transmitted neurological disease to mice. Terminal animals contained similar concentrations of α-synuclein prions; however, a time-course study where mice were terminated every five days through disease progression revealed that the kinetics of α-synuclein prion replication in the mice were variable. Stereotactic inoculation into the thalamus reduced variability in disease onset in the mice, although incubation times were consistent with standard inoculations. Using human samples with and without neuropathological lesions, we observed that α-synuclein prion formation precedes neuropathology in the brain, suggesting that disease in patients is not limited to brain regions containing neuropathological lesions.


Assuntos
Encéfalo/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Mutação Puntual , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Feminino , Humanos , Cinética , Masculino , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Príons/genética , Príons/metabolismo , alfa-Sinucleína/genética
19.
Acta Neuropathol Commun ; 7(1): 81, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109379

RESUMO

Glial cytoplasmic inclusions (GCIs) containing aggregated and hyperphosphorylated α-synuclein are the signature neuropathological hallmark of multiple system atrophy (MSA). Native α-synuclein can adopt a prion conformation that self-propagates and spreads throughout the brain ultimately resulting in neurodegeneration. A growing body of evidence argues that, in addition to oligodendrocytes, astrocytes contain α-synuclein inclusions in MSA and other α-synucleinopathies at advanced stages of disease. To study the role of astrocytes in MSA, we added MSA brain homogenate to primary cultures of astrocytes from transgenic (Tg) mouse lines expressing human α-synuclein. Astrocytes from four Tg lines, expressing either wild-type or mutant (A53T or A30P) human α-synuclein, propagated and accumulated α-synuclein prions. Furthermore, we found that MSA-infected astrocytes formed two morphologically distinct α-synuclein inclusions: filamentous and granular. Both types of cytoplasmic inclusions shared several features characteristic of α-synuclein inclusions in synucleinopathies: hyperphosphorylation preceded by aggregation, ubiquitination, thioflavin S-positivity, and co-localization with p62. Our findings demonstrate that human α-synuclein forms distinct inclusion morphologies and propagates within cultured Tg astrocytes exposed to MSA prions, indicating that α-synuclein expression determines the tropism of inclusion formation in certain cells. Thus, our work may prove useful in elucidating the role of astrocytes in the pathogenic mechanisms that feature in neurodegeneration caused by MSA prions.


Assuntos
Astrócitos/patologia , Atrofia de Múltiplos Sistemas/patologia , Príons/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/metabolismo , Proteínas Recombinantes/administração & dosagem , alfa-Sinucleína/administração & dosagem
20.
Sci Transl Med ; 11(490)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043574

RESUMO

The hallmarks of Alzheimer's disease (AD) are the accumulation of Aß plaques and neurofibrillary tangles composed of hyperphosphorylated tau. We developed sensitive cellular assays using human embryonic kidney-293T cells to quantify intracellular self-propagating conformers of Aß in brain samples from patients with AD or other neurodegenerative diseases. Postmortem brain tissue from patients with AD had measurable amounts of pathological Aß conformers. Individuals over 80 years of age had the lowest amounts of prion-like Aß and phosphorylated tau. Unexpectedly, the longevity-dependent decrease in self-propagating tau conformers occurred in spite of increasing amounts of total insoluble tau. When corrected for the abundance of insoluble tau, the ability of postmortem AD brain homogenates to induce misfolded tau in the cellular assays showed an exponential decrease with longevity, with a half-life of about one decade over the age range of 37 to 99 years. Thus, our findings demonstrate an inverse correlation between longevity in patients with AD and the abundance of pathological tau conformers. Our cellular assays can be applied to patient selection for clinical studies and the development of new drugs and diagnostics for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Longevidade , Príons/metabolismo , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Doença de Alzheimer/complicações , Animais , Apolipoproteína E4/genética , Modelos Animais de Doenças , Genótipo , Gliose/complicações , Gliose/patologia , Células HEK293 , Humanos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fenótipo , Fosforilação , Placa Amiloide/complicações , Placa Amiloide/patologia , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...